Photochromic Heterocyclic Fulgides. Part 6. ${ }^{1}$ Base-catalysed Cyclizations of 1-(2,5-Dimethyl-3-furyl and 2,5-Dimethyl-3-thienyl)ethylidene(isopropylidene)succinic Anhydrides and Related Compounds

Sean L. Bowden, Stuart A. Harris, Harry G. Heller* and Michael J. E. Hewlins
School of Chemistry and Applied Chemistry, University of Wales College of Cardiff, PO Box 912, Cardiff CF1 3TB, Wales

The title fulgides 1a and 3a ($\mathrm{X}=\mathrm{O}$ or S) rearrange in boiling pyridine to yield deep red cis-8,8a-dihydro-2,4,7,8a-tetramethyl-7H-cyclohepta[b]-furan and -thiophene-5,6-dicarboxylic anhydrides 6a ($\mathrm{X}=\mathrm{O}$ or S) respectively. The corresponding 2 -thienyl fulgide 8 undergoes a similar rearrangement but with a subsequent 1,5 -shift of its 3 -hydrogen to give the colourless cis-5,6-dihydro-5,8-dimethyl-4H-cyclohepta[b]thiophene-6,7-dicarboxylic anhydride 11. The 3-thienylfulgide 1d $(X=S)$ undergoes a similar rearrangement to yield the colourless trans-7,8-dihydro-4,7-dimethyl-6H-cyclohepta[b]thiophene-5,6-dicarboxylic anhydride 7. 3-Methyl-5,5-diphenyl-cyclohepta-1(7),2-diene-1,2-dicarboxylic anhydride 13 is obtained in an analogous reaction from (E)-3,3-diphenylallylidene(isopropylidene)succinic anhydride 12. Structural assignments are based on NMR studies. The mechanistic implications of the reactions are discussed.

Photochemical ring-closures of 3-furyl-, 3-thienyl- and pyrrol3 -ylethylidene(isopropylidene)succinic anhydrides (fulgides) 1a ($\mathrm{X}=\mathrm{O}, \mathrm{S}$, or NMe) to give highly coloured 7,7a-dihydrobenzofuran, 7,7a-dihydrobenzothiophene and 7,7a-dihydroindole derivatives $\mathbf{2 a}(X=O, S$ and $N M e)$ have been reported earlier. ${ }^{1}$

We report now a new and general base-catalysed rearrangement of furyl and thienyl fulgides to yield dihydrocyclohepta $[b]$-furan and -thiophenedicarboxylic anhydride [DHCF and DHCT] derivatives respectively. This reaction was discovered accidentally ${ }^{4}$ during an attempt to isomerise the Z fulgide $3 \mathrm{a}(\mathrm{X}=\mathrm{O})^{2}$ in boiling pyridine. The pyridine solution turned deep red and the colour was not discharged on acidification. A single deep red crystalline compound, cis-8,8a-dihydro-2,4,7,8a-tetramethyl-7 H -cyclohepta $[b]$ furan- 5,6 -dicarboxylic anhydride $6 \mathrm{a}(\mathrm{X}=\mathrm{O})$ was obtained in high yield. Its structure follows from its $360 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum which showed three singlet signals ($\delta 2.12,2.10$ and 1.30) assigned to the 2,4 and 8 a methyl groups. The 3 H doublet at $\delta 1.41$ ($J 7.5$ Hz) (which was assigned to the pseudo equatorial 7-methyl group) coupled to a multiplet at δ 3.13. The latter was assigned to the pseudo-axial $7-\mathrm{H}$ because of its large coupling $(12 \mathrm{~Hz})$ to the pseudo axial $8-\mathrm{H}$ which gave a resonance at δ 1.99 and its 8 Hz coupling to the pseudo equatorial $8-\mathrm{H}$ at δ 2.37 (See Fig. 1).

It can be seen from molecular models that a pseudo axial-axial arrangement of the 7-methyl and 8a-phenyl substituents in DHCF 6c $(X=O)$ should result in shielding of the 7 -methyl by the 8a-phenyl group. The fulgide $1 \mathbf{c}(\mathrm{X}=\mathrm{O})$ was converted into the red 8,8a-DHCF $\mathbf{6 c}(X=O)$ when boiled in pyridine. Its NMR spectrum did not show shielding of the 7methyl by the 8a-phenyl group, which is in accord with the structural assignment of a pseudo-equatorial methyl in both DHCFs 6a and $\mathbf{6 c}(\mathrm{X}=\mathrm{O})$. The NMR spectrum of the latter showed shielding of the pseudo-axial $7-\mathrm{H}$ and the pseudo equatorial $8-\mathrm{H}$ by the $8 \mathrm{a}-\mathrm{ph}$ nyl group.
(Z)-2,5-Dimethyl-3-thienylfulgides 3a and 3b $(X=S)^{3}$ rearranged to the red cis-8,8a-DHCTS $\mathbf{6 a}$ and $\mathbf{6 b}$; $(\mathbf{X}=\mathbf{S})$ when boiled in pyridine. Detailed NMR studies indicated that the two DHCTs 6a and 6b $(X=S)$ have structures analogous to the $8,8 \mathrm{a}-\mathrm{DHCFs} 6 \mathrm{a}(\mathrm{X}=\mathrm{O})$ and a cis-configuration of their 7 and 8a hydrogens. The absorption spectra of the red compounds 6 a $(X=O)$ and 6a $(X=S)$ and the 7,7a-DHBF 2a $(X=O)$ are shown in Fig. 2.

The pale yellow (E)-1,2,5-trimethylpyrrol-3-ylfulgide 1b $(\mathrm{X}=\mathrm{NMe})^{1}$ gave a deep blue colour in boiling pyridine which was discharged on acidification. NMR analysis of the product indicated that the main reaction was $E-Z$ isomerisation to give a $1: 1$ mixture of E - and Z-fulgides $\mathbf{1 b}$ and $\mathbf{3 b}(X=N M e)$. No other products could be identified.

The (E)-3-thienylfulgide 1d $(\mathrm{X}=\mathrm{S})^{3}$ rearranged to give the colourless trans-7,8-dihydro-4,7-dimethyl- 6 H -cyclohepta-[b]thiophene-5,6-dicarboxylic anhydride 7, on boiling in pyridine. Its structure follows from its NMR spectrum which showed a doublet at $\delta 2.64$ (assigned to the allylic $4-\mathrm{Me}$) coupled (J 2) to a multiplet at $\delta 2.81$ (pseudo-axial $6-\mathrm{H}$) which, in turn, was coupled (J 10) to a multiplet at $\delta 2.95$ (assigned to the pseudo-axial $7-\mathrm{H}$). The large coupling is attributed to an axial-axial arrrangement of 6 - and 7 -hydrogens. The lowfield doublet at $\delta 1.37(J 7)$ is assigned to the pseudoequatorial $7-\mathrm{Me}$ which lies in the deshielding zone of a carbonyl of the anhydride ring. The assignment of configuration of the 7 Me as pseudo equatorial is supported by the NOE enhancements seen at the protons assigned as $6 \beta-\mathrm{H}, 7 \alpha-\mathrm{H}$ and $8 \beta-\mathrm{H}$ on irradiation of the $7-\mathrm{Me}$.
The (E)-2-thienylfulgide $\mathbf{8}^{3}$ showed a similar rearrangement on boiling in pyridine to give the colourless cis- 5,6 -dihydro-5,8-dimethyl-4 H -cyclohepta[b]thiophene-6,7-dicarboxylic anhydride 11. Its NMR spectrum showed a doublet ($J 2$) at δ 2.80 (assigned to the allylic $8-\mathrm{Me}$) coupled to the multiplet at $\delta 3.65$ (assigned to the pseudo-axial $6-\mathrm{H}$). The latter was coupled (J 3) to the multiplet at $\delta 3.02$ (assigned to the pseudo-equatorial $5-\mathrm{H})$. On the basis of these assignments, it follows that the 5 -methyl must be pseudo-axial and remote from the deshielding zone of a carbonyl of the anhydride ring. This is reflected in its highfield chemical signal ($\delta 0.95$) compared to the equatorial 7 -methyl ($\delta 1.37$) in isomer 7 . The coupling constant ($J 4$) between the pseudo-equatorial $5-\mathrm{H}$ and the pseudo-axial $4-\mathrm{H}$ is consistent with the assigned stereochemistry. The structure and stereochemistry was confirmed by X-ray crystallographic analyses by M. B. Hursthouse and A. Karaulov ${ }^{6}$ (See Fig. 3).

3-Methyl-5,5-diphenylcyclohepta-1(7),2-diene-1,2-dicarboxylic anhydride 13 was obtained in high yield in an analogous reaction when (E)-3,3-diphenylallylidene(isopropylidene)succinic anhydride 12 was boiled in pyridine.
(Z)-Isopropylidene(phenylethylidene)succinic anhydride 14 did not undergo the above rearrangement on boiling in pyridine

1

a; $R^{1}=R^{2}=M e$
b; $R^{1}=H, R^{2}=M e$
c; $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}$
d; $R^{1}=R^{2}=H$
but isomerised to give a 6:3:1 mixture of the (E)-fulgide 15 and the two $1,5-\mathrm{H}$-shift products 16 and 17 respectively. A similar product composition was obtained when the (Z)-fulgide 14 was heated in CDCl_{3} in a sealed NMR tube at $140{ }^{\circ} \mathrm{C} .{ }^{5}$

The first step in the mechanism for the base-catalysed rearrangements described above is considered to be abstraction of a proton from a methyl of the isopropylidene group, followed by an intramolecular 1,6-addition to give a resonance-stabilised enolate anion which can give rise to different products depending on which carbon is reprotonated.

A probable mechanism for the formation of dihydro derivatives 6a-c and 11, is direct protonation of anions 5a-c or 9 from the sterically less hindered side. An alternative mechanism

Fig. 1 Part of $360 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of cis-8,8a-dihydro-2,4,7,8a-tetramethyl-7H-cyclohepta[b]furan-5,6-dicarboxylic anhydride $6 a(X=O)$.

Fig. 2 Absorption spectra of $c a .1 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ solutions of compounds $2 \mathbf{a}(X=O)(A), 6 a(X=O)(B)$ and $6 a(X=S)(C)$ in toluene
is protonation to give cis dihydro compounds (e.g. 10) followed by $1,5-\mathrm{H}$ shift in the case of $\mathbf{6 a - c}$ or two $1,5-\mathrm{H}$ shifts in the case of 6d and 11).
Compound $7(\mathrm{X}=\mathrm{S})$, having the trans-axial-axial arrangement of 6-and 7a-hydrogens could not be formed by the latter mechanism unless the strained trans-4,10-dihydro intermediate was formed initially, which is considered unlikely. The simpler alternative mechanism is that the enolate anion 5 undergoes protonation from the sterically less-hindered side, before or after a 1,5 -hydrogen shift has occurred.

Experimental

UV spectra were measured in toluene on a Pye Unicam SP8-200 spectrophotometer; NMR spectra were obtained with a Bruker WM360 spectrometer; J values are recorded in Hz. Nuclear Overhauser enhancements were measured at 360 MHz on a Bruker WM360 spectrometer by the difference method using standard Bruker software. Low-intensity presaturation pulses of 5 s duration were applied before each scan. A sequence of 8 pulses at the selected position followed by 8 pulses at a nearby 'blank' position was repeated 24 or 48 times. The summed 'irradiated' and 'blank' free induction decay patterns were subtracted and transformed after processing with a linebroadening factor of 1 Hz . Quantitative values for enhancement were obtained from integrals of the difference spectra. In all cases, 32 K data points were used over a spectral width of 4505 Hz . Mass spectra were recorded by electron impact on a Varian CH5D mass spectrometer.

Procedure for the Base-catalysed Rearrangements of Ful-gides.-A $10 \% \mathrm{w} / \mathrm{v}$ solution of the fulgide in anhydrous pyridine

Fig. 3 X-ray structure of compound 11
was refluxed (3 h), cooled and poured into $3 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid. The aqueous solution was extracted with ether, washed with water, and dried $\left(\mathrm{MgSO}_{4}\right)$ and removed. The residue was crystallised from chloroform-petroleum.
cis-8,8a-Dihydro-2,4,7,8a-tetramethyl-7H-cyclohepta[b]-furan-5,6-dicarboxylic Anhydride 6a, ($\mathrm{X}=\mathrm{O}$).-The cis-8,8aDHCF $6 \mathrm{a}(\mathrm{X}=\mathrm{O})$ was obtained in 88% yield from (E) - or (Z)-1-(2,5-dimethyl-3-furyl)ethylidene(isopropylidene)succinic anhydride ${ }^{2} 1 \mathrm{a}$ or $3 \mathrm{a}(\mathrm{X}=\mathrm{O})(1 \mathrm{~g})$, as red plates, m.p. 129$130{ }^{\circ} \mathrm{C}$. (Found: C, $68.95 ; \mathrm{H}, 6.1 \% ; \mathrm{M}^{+}, 260 . \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C, $69.21 ; \mathrm{H}, 6.19 \% ; M, 260$); $v_{\text {max }} / \mathrm{cm}^{-1} 1817 \mathrm{~m}, 1741 \mathrm{~s}$ and

1546s; $\lambda_{\text {max }} / \mathrm{nm} 461\left(\varepsilon / \mathrm{dm}^{3} \quad \mathrm{~mol}^{-1} \mathrm{~cm}^{-} 11820\right)$. NMR spectrum, see Fig. 2.
cis-8,8a-Dihydro-2,4,7,8a-tetramethyl-7H-cyclohepta[b]thio-phene-5,6-dicarboxylic Anhydride $6 \mathbf{a}(\mathrm{X}=\mathrm{S})$.-The cis-8,8aDHCT $6 \mathrm{a}(\mathrm{X}=\mathrm{S})$ was obtained in 67% yield from $(Z)-1-(2,5-$ dimethyl-3-thienyl)ethylidene(isopropylidene)succinic anhydride ${ }^{3} \mathbf{3 a}(\mathrm{X}=\mathrm{S})(1 \mathrm{~g})$, as red plates, m.p. $142^{\circ} \mathrm{C}$ (Found: C , $65.15 ; \mathrm{H}, 5.85 \% ; \mathrm{M}^{+} 276 . \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{SO}_{3}$ requires $\mathrm{C}, 65.24 ; \mathrm{H}$, $5.79 \% ; M, 276) ; v_{\text {max }} / \mathrm{cm}^{-1} 1838 \mathrm{~m}, 1813 \mathrm{~m}$ and $1757 \mathrm{~s} ; \lambda_{\text {max }} / \mathrm{nm}$ $486\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 11670\right) ; \delta 1.39(3 \mathrm{H}, \mathrm{d}, J 7,7 \beta-\mathrm{Me}), 1.54$ ($3 \mathrm{H}, \mathrm{s}, 8 \mathrm{a} \beta-\mathrm{Me}$), $2.20(6 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}, 4-\mathrm{Me}), 2.33$ ($1 \mathrm{H}, \mathrm{dd}, J 14$, $12,8 \beta-\mathrm{H}), 2.40(1 \mathrm{H}, \mathrm{dd}, J 14,8,8 \alpha-\mathrm{H}), 3.16(1 \mathrm{H}, \mathrm{ddq}, J 12,8$, $7,7 \alpha-\mathrm{H})$ and 6.02 ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$).
cis-8,8a-Dihydro-2,7,8a-trimethyl-7H-cyclohepta[b]thio-phene-5,6-dicarboxylic Anhydride 6b $(\mathbf{X}=\mathbf{S})$.-The cis-8,8aDHCT $6 \mathrm{~b}(\mathrm{X}=\mathrm{S})$ was obtained in 28% yield from $(E)-2,5$ -dimethyl-3-thienylmethylene(isopropylidene)succinic anhydride ${ }^{3} \mathbf{1 b}(X=S)(0.5 \mathrm{~g})$, as red needles, m.p. ${ }^{138-140}{ }^{\circ} \mathrm{C}$ (Found: C, 63.85; H, 5.4. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{SO}_{3}$ requires $\mathrm{C}, 64.10 ; \mathrm{H}$, $5.38 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1839 \mathrm{~m}, 1810 \mathrm{~m}$ and $1753 \mathrm{~s} ; \lambda_{\text {max }} / \mathrm{nm} 476\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\left.\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 14640\right) ; \delta 6.20(1 \mathrm{H}, \mathrm{s}$, olefinic), $5.88(1 \mathrm{H}, \mathrm{s}$, olefinic), $3.15(1 \mathrm{H}, \mathrm{m}$, methine $7-\mathrm{H}), 2.30(2 \mathrm{H}, \mathrm{m}, 2 \times$ methylene $8-\mathrm{H})$, $2.20(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 1.60(3 \mathrm{H}, \mathrm{s}, 8 \mathrm{a}-\mathrm{Me})$ and $1.44(3 \mathrm{H}, \mathrm{d}, J 7$, $7-\mathrm{Me}$).
cis-5,6-Dihydro-5,8-dimethyl-4H-cyclohepta[b]thiophene-6,7dicarboxylic Anhydride 11.-The cis-5,6-DHBT 9 was obtained in 98% yield from (E)-1-(2- thienyl)ethylidene(isopropylidene) succinic anhydride $\mathbf{8}^{3}(0.5 \mathrm{~g})$, as pale yellow plates, m.p. $140-141^{\circ} \mathrm{C}$ (Found: C, $62.5 ; \mathrm{H}, 4.98 \%$; $\mathrm{M}^{+}, 248 . \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{SO}_{3}$ requires $\mathrm{C}, 62.90 ; \mathrm{H}, 4.87 \% ; M, 248)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1818 \mathrm{~s}, 1746 \mathrm{~s}$ and $1609 \mathrm{~s} ; \lambda_{\text {max }} / 333 \mathrm{~nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 16070\right) ; \delta 0.95(3 \mathrm{H}, \mathrm{d}, J 7$, $\left.5 \alpha-\mathrm{CH}_{3}\right), 2.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2,8-\mathrm{CH}_{3}\right), 2.86(1 \mathrm{H}, \mathrm{ddd}, J 17,4,1$, $4 \alpha-\mathrm{H}), 3.02$ (1 H , qddd, $J 7,6,4,3,5 \beta-\mathrm{H}$), 3.34 (1 H , dd, $J 17,6$, $4 \beta-\mathrm{H}), 3.65(1 \mathrm{H}, \mathrm{br}, 6 \beta-\mathrm{H}), 7.00(1 \mathrm{H}, \mathrm{d}, J 5,3-\mathrm{H})$ and $7.51(1 \mathrm{H}$, d, $J 5,2-\mathrm{H})$; NOE $5 \alpha-\mathrm{Me} \rightarrow 5 \beta-\mathrm{H}(10 \%), 5 \alpha \mathrm{Me} \rightarrow 4 \beta-\mathrm{H}(5 \%)$, $3-\mathrm{H} \rightarrow 4 \alpha-\mathrm{H}(2.6 \%)$ and $3-\mathrm{H} \rightarrow 4 \beta-\mathrm{H}(1.4 \%)$.
trans-7,8-Dihydro-4,7-dimethyl-6H-cyclohepta[b]thiophene-5,6-dicarboxylic Anhydride 7.-The trans-6,7-DHCT 7 was obtained in 93% yield from (E)-1-(3-thienyl)ethylidene(isopropylidene)succinic anhydride $1 \mathrm{~d} ; \mathrm{X}=\mathrm{S}^{3}(0.5 \mathrm{~g})$, as

16

15 11

17
colourless plates, m.p. $149{ }^{\circ} \mathrm{C}$ (Found: C, 62.5; H, 4.95\%; M^{+}, 248. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{SO}_{3}$ requires $\mathrm{C}, 62.90 ; \mathrm{H}, 4.87 \% ; \mathrm{M}, 248$); $v_{\text {max }} / \mathrm{cm}^{-1} 1817 \mathrm{~m}, 1756 \mathrm{~s}$ and $1618 \mathrm{~m} ; \lambda_{\text {max }} / \mathrm{nm} 312\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 9800$); $\delta 1.37\left(3 \mathrm{H}, \mathrm{d}, J 7,7 \beta-\mathrm{CH}_{3}\right), 2.64(3 \mathrm{H}, \mathrm{d}$, $\left.J 2,4-\mathrm{CH}_{3}\right), 2.66(1 \mathrm{H}, \mathrm{d}, J c a .13,8 \beta-\mathrm{H}), 2.81(1 \mathrm{H}, \mathrm{dq}, J 10,2$, $6 \beta-\mathrm{H})$, 2.9-3.0 (2 H complex $8 x-\mathrm{H}$ and $7 x-\mathrm{H}$), $7.16(1 \mathrm{H}$, d, $J 6,3-\mathrm{H})$ and $7.22(1 \mathrm{H}, \mathrm{d}, J 5,2-\mathrm{H})$; NOE $3-\mathrm{H} \rightarrow 4-\mathrm{Me}(5 \%)$, $7 \beta-\mathrm{Me} \rightarrow 8 \beta-\mathrm{H} \quad(2.5 \%), \quad 7 \beta-\mathrm{Me} \rightarrow 6 \beta-\mathrm{H} \quad(9 \%) \quad$ and $\quad 7 \beta-$ $\mathrm{Me} \rightarrow 7 x-\mathrm{H}(8 \%)$.
cis-8,8a-Dihydro-4,7-dimethyl-2,8a-diphenyl-7H-cyclohepta[b] furan-5,6-dicarboxylic Anhydride $\mathbf{6 c}(\mathbf{X}=\mathbf{O})$.-From (Z) -1-(2,5-diphenyl-3-furyl)ethylidene(isopropylidene)succinic anhydride $3 \mathrm{c}(\mathrm{X}=\mathrm{O})(0.25 \mathrm{~g})$, cis-8,8a-DHCF $6 \mathbf{c}(\mathrm{X}=\mathrm{O})$ was obtained as red plates, m.p. 167-168 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 78.1$; H, 5.35. $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\mathrm{C}, 78.11, \mathrm{H}, 5.24 \%$); $\delta 7.67(2 \mathrm{H}, \mathrm{m}$, aromatics), $7.28-7.28(8 \mathrm{H}, \mathrm{m}$, aromatics $), 6.44(1 \mathrm{H}, \mathrm{s}$, olefinic 3H), $3.15(1 \mathrm{H}$, dd, $J 12$ and 7.5 methylene $8-\mathrm{H}), 2.84(1 \mathrm{H}, \mathrm{ddq}, J$ $12,7.5$ and 7 , methine $7-\mathrm{H}), 2.42(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}), 2.35(1 \mathrm{H}, \mathrm{dd}, J$ 12 and 12 , methylene $8-\mathrm{H}$), and 1.37 ($3 \mathrm{H}, \mathrm{d}, J 7,7-\mathrm{Me}$).

5,5-Diphenyl-3-methylcyclohepta-1(7),2-diene-1,2-dicarboxylic Anhydride 13.-The title compound 13 was obtained in 74% yield from (E)-3,3-diphenylallylidene(isopropylidene)succinic anhydride $12(0.27 \mathrm{~g})$, as colourless needles (from chloroform-light petroleum), m.p. $222{ }^{\circ} \mathrm{C}$ (Found: C, 79.75; H,

[^0]$5.51 \% ; \mathrm{M}^{+}, 330 . \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 79.98 ; \mathrm{H}, 5.49 \% ; M$, $330) ; v_{\text {max }} / \mathrm{cm}^{-1} 1812 \mathrm{~s}, 1757 \mathrm{~s}, 1663 \mathrm{~m}$ and $1645 \mathrm{~m} ; \delta 7.2-7.3(6 \mathrm{H}$, complex m - and $p-\mathrm{ArH}$); $7.00(4 \mathrm{H}, \mathrm{d}, J 7, o-\mathrm{ArH}), 3.48(2 \mathrm{H}, \mathrm{s}$, methylene $7-\mathrm{Hs}$), ($2 \mathrm{H}, \mathrm{d}, J 2$, methylene $5-\mathrm{Hs}$) and $2.44(3 \mathrm{H}, \mathrm{s}, 1-$ Me).

Attempted Cyclisation of (E)-1,2,5-Trimethylpyrrol-3-ylmethylene(isopropylidene)succinic Anhydride 1b ($\mathrm{X}=\mathrm{NMe}$).The fulgide $(0.35 \mathrm{~g})^{1}$ in pyridine $\left(100 \mathrm{~cm}^{3}\right)$ was boiled (4 h). Work-up gave a $1: 1$ mixture of the (E) and (Z)-fulgides $\mathbf{1 b}$ $(X=N M e)$ and $3 b(X=N M e)$, no cyclization having occurred.
(Z)-1-(2,5-Diphenyl-3-furyl)ethylidene(isopropylidene)-
succinic Anhydride $\mathbf{6 c}(\mathrm{X}=\mathrm{O})^{*}$.- A mixture of diethyl isopropylidenesuccinate (5 g) and 3-acetyl-2,5-diphenylfuran (5 g) was added dropwise with stirring to a solution of potassium tert-butoxide [prepared by dissolving potassium (3g) in boiling tert-butyl alcohol $\left(100 \mathrm{~cm}^{3}\right)$] at room temperature. After 3 h , most of the solvent was removed under reduced pressure and water added. On addition of $5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid, the half ester separated and was hydrolysed with 10% ethanolic KOH . Solvent was removed and the residue acidified with dilute hydrochloric acid. On treatment of the resulting diacid with acetyl chloride the (Z)-fulgide $\mathbf{6 c}(X=O)$ separated and was recrystallised from ethanol to give yellow plates $(0.3 \mathrm{~g})$, m.p. $156{ }^{\circ} \mathrm{C}$. (Found: C ; 78.1, $\mathrm{H}, 5.3 . \mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\mathrm{C}, 78.11$; H , 5.24%); $\lambda_{\text {max }} / \mathrm{nm} 310\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 2820\right.$); $\delta 2.01,2.21$ and $2.50(9 \mathrm{H}$ three s, three Me s), $6.71(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$ and $7.45-7.90(10$ H, m, ArH).

References

1 H. G. Heller, S. A. Harris and S. N. Oliver, Part 5, J. Chem. Soc., Perkin Trans. 1, 1991, 3259.
2 P. J. Darcy, H. G. Heller, P. J. Strydom and J. Whittall, J. Chem. Soc., Perkin Trans. 1, 1981, 202.
3 A. P. Glaze, S. A. Harris, H. G. Heller, W. Johncock, S. N. Oliver, P. J. Strydom and J. Whittall, J. Chem. Soc., Perkin Trans. I, 1985, 957.
4 A. Gabbutt, Ph.D. Thesis 1985, U.C.W., Aberystwyth.
5 H. G. Heller, S. N. Oliver and M. Shawe, J. Chem. Soc., Perkin Trans. 1, 1979, 154.
6 Personal communication. M. B. Hursthouse and A. Karaulov.

[^0]: * We thank Dr. P. J. Darcy for preparing this fulgide.

